Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (2024)

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (1) https://doi.org/10.1038/s41380-021-01428-z · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (2)

Видання: Molecular Psychiatry, 2022, №4, с.2340-2354

Видавець: Springer Science and Business Media LLC

Автори:

  1. Chloé Berland
  2. Julien Castel
  3. Romano Terrasi
  4. Enrica Montalban
  5. Ewout Foppen
  6. Claire Martin
  7. Giulio G. Muccioli
  8. Serge Luquet
  9. Giuseppe Gangarossa

Джерела фінансування

  1. Nutricia Research Foundation
  2. Allen Foundation
  3. Fondation Fyssen
  4. Agence Nationale de la Recherche
  5. CNRS, Université de Paris, Fédération pour la Recherche sur le Cerveau and Association France Parkinson
  6. Fondation pour la Recherche Médicale

Список літератури

  1. Berthoud H-R, Münzberg H, Morrison CD. Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology 2017;152:1728–38.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (3) https://doi.org/10.1053/j.gastro.2016.12.050
  2. Lenard NR, Berthoud H-R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obes (Silver Spring). 2008;16:S11–22. Suppl 3
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (4) https://doi.org/10.1038/oby.2008.511
  3. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43:2–15.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (5) https://doi.org/10.1016/S0018-506X(02)00024-7
  4. George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav. 2012;106:58–64.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (6) https://doi.org/10.1016/j.physbeh.2011.11.004
  5. Volkow ND, Wang G-J, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci (Regul Ed). 2011;15:37–46.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (7) https://doi.org/10.1016/j.tics.2010.11.001
  6. Mazier W, Saucisse N, Simon V, Cannich A, Marsicano G, Massa F, et al. mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol Metab. 2019;28:151–9.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (8) https://doi.org/10.1016/j.molmet.2019.08.005
  7. Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, van den Munkhof HE, et al. Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science 2019;364:1271–4.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (9) https://doi.org/10.1126/science.aax1184
  8. Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y, et al. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. Elife. 2020;9.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (10) https://doi.org/10.7554/eLife.55909
  9. Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA, et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell 2019;179:1129–.e23.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (11) https://doi.org/10.1016/j.cell.2019.10.031
  10. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (12) https://doi.org/10.1126/science.aat5236
  11. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;594:5791–815.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (13) https://doi.org/10.1113/JP271538
  12. Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab. 2021;32:693–705.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (14) https://doi.org/10.1016/j.tem.2021.05.008
  13. Fernandes AB, Alves da Silva J, Almeida J, Cui G, Gerfen CR, Costa RM, et al. Postingestive Modulation of Food Seeking Depends on Vagus-Mediated Dopamine Neuron Activity. Neuron 2020;106:778–.e6.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (15) https://doi.org/10.1016/j.neuron.2020.03.009
  14. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A Neural Circuit for Gut-Induced Reward. Cell 2018;175:665–.e23.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (16) https://doi.org/10.1016/j.cell.2018.08.049
  15. Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, et al. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metab. 2017;25:335–44.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (17) https://doi.org/10.1016/j.cmet.2016.12.006
  16. Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav. 2017;171:32–39.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (18) https://doi.org/10.1016/j.physbeh.2016.12.044
  17. DiPatrizio NV, Joslin A, Jung K-M, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 2013;27:2513–20.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (19) https://doi.org/10.1096/fj.13-227587
  18. Gómez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci. 2002;22:9612–7.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (20) https://doi.org/10.1523/JNEUROSCI.22-21-09612.2002
  19. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005;30:1216–21.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (21) https://doi.org/10.1038/sj.npp.1300695
  20. Monteleone AM, Piscitelli F, Dalle Grave R, El Ghoch M, Di Marzo V, Maj M, et al. Peripheral Endocannabinoid Responses to Hedonic Eating in Binge-Eating Disorder. Nutrients. 2017;9.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (22) https://doi.org/10.3390/nu9121377
  21. Kuipers EN, Kantae V, Maarse BCE, van den Berg SM, van Eenige R, Nahon KJ, et al. High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Front Physiol. 2018;9:1913.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (23) https://doi.org/10.3389/fphys.2018.01913
  22. Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, et al. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab. 2020;31:773–.e11.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (24) https://doi.org/10.1016/j.cmet.2020.02.010
  23. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong W-H, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (25) https://doi.org/10.1126/science.aat4422
  24. Avena NM. The study of food addiction using animal models of binge eating. Appetite 2010;55:734–7.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (26) https://doi.org/10.1016/j.appet.2010.09.010
  25. DiFeliceantonio AG, Coppin G, Rigoux L, Edwin Thanarajah S, Dagher A, Tittgemeyer M, et al. Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab. 2018;28:33–44.e3.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (27) https://doi.org/10.1016/j.cmet.2018.05.018
  26. Oosterman JE, Koekkoek LL, Foppen E, Unmehopa UA, Eggels L, Verheij J, et al. Synergistic Effect of Feeding Time and Diet on Hepatic Steatosis and Gene Expression in Male Wistar Rats. Obes (Silver Spring). 2020;28:S81–S92. Suppl 1
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (28) https://doi.org/10.1002/oby.22832
  27. Wang G-J, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC, et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obes (Silver Spring). 2011;19:1601–8.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (29) https://doi.org/10.1038/oby.2011.27
  28. Spierling S, de Guglielmo G, Kirson D, Kreisler A, Roberto M, George O, et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology 2020;45:579–88.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (30) https://doi.org/10.1038/s41386-019-0538-x
  29. Biever A, Puighermanal E, Nishi A, David A, Panciatici C, Longueville S, et al. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J Neurosci. 2015;35:4113–30.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (31) https://doi.org/10.1523/JNEUROSCI.3288-14.2015
  30. Gangarossa G, Perroy J, Valjent E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct. 2013;218:405–19.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (32) https://doi.org/10.1007/s00429-012-0405-6
  31. Radl D, Chiacchiaretta M, Lewis RG, Brami-Cherrier K, Arcuri L, Borrelli E. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms. Proc Natl Acad Sci USA. 2018;115:198–203.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (33) https://doi.org/10.1073/pnas.1717194115
  32. Reichelt AC, Westbrook RF, Morris MJ. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br J Pharm. 2015;172:5225–38.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (34) https://doi.org/10.1111/bph.13321
  33. de Araujo IE, Schatzker M, Small DM. Rethinking Food Reward. Annu Rev Psychol. 2020;71:139–64.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (35) https://doi.org/10.1146/annurev-psych-122216-011643
  34. DiPatrizio NV, Piomelli D. Intestinal lipid-derived signals that sense dietary fat. J Clin Invest. 2015;125:891–8.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (36) https://doi.org/10.1172/JCI76302
  35. Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017;124:38–51.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (37) https://doi.org/10.1016/j.neuropharm.2017.05.033
  36. Cluny NL, Vemuri VK, Chambers AP, Limebeer CL, Bedard H, Wood JT, et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br J Pharm. 2010;161:629–42.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (38) https://doi.org/10.1111/j.1476-5381.2010.00908.x
  37. Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012;16:167–79.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (39) https://doi.org/10.1016/j.cmet.2012.07.002
  38. Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest. 2010;120:2953–66.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (40) https://doi.org/10.1172/JCI42551
  39. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5:37–44.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (41) https://doi.org/10.1038/nchembio.129
  40. Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP. Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS One. 2012;7:e42373.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (42) https://doi.org/10.1371/journal.pone.0042373
  41. Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol. 2019;10:704.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (43) https://doi.org/10.3389/fphys.2019.00704
  42. Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab. 2018;12:62–75.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (44) https://doi.org/10.1016/j.molmet.2018.03.016
  43. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012;16:296–309.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (45) https://doi.org/10.1016/j.cmet.2012.06.015
  44. D’Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife. 2016;5.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (46) https://doi.org/10.7554/eLife.12225
  45. Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, et al. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab. 2020;31:301–.e5.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (47) https://doi.org/10.1016/j.cmet.2019.12.012
  46. Hutson PH, Balodis IM, Potenza MN. Binge-eating disorder: Clinical and therapeutic advances. Pharm Ther. 2018;182:15–27.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (48) https://doi.org/10.1016/j.pharmthera.2017.08.002
  47. Carr MM, Grilo CM. Examining heterogeneity of binge-eating disorder using latent class analysis. J Psychiatr Res. 2020;130:194–200.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (49) https://doi.org/10.1016/j.jpsychires.2020.07.032
  48. Naish KR, Laliberte M, MacKillop J, Balodis IM. Systematic review of the effects of acute stress in binge eating disorder. Eur J Neurosci. 2019;50:2415–29.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (50) https://doi.org/10.1111/ejn.14110
  49. Bake T, Murphy M, Morgan DGA, Mercer JG. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice. Appetite 2014;77:60–71.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (51) https://doi.org/10.1016/j.appet.2014.02.020
  50. Muñoz-Escobar G, Guerrero-Vargas NN, Escobar C. Random access to palatable food stimulates similar addiction-like responses as a fixed schedule, but only a fixed schedule elicits anticipatory activation. Sci Rep. 2019;9:18223.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (52) https://doi.org/10.1038/s41598-019-54540-0
  51. Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev. 2014;121:225–47.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (53) https://doi.org/10.1037/a0035942
  52. De Ridder D, Manning P, Leong SL, Ross S, Vanneste S. Allostasis in health and food addiction. Sci Rep. 2016;6:37126.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (54) https://doi.org/10.1038/srep37126
  53. Luo Z, Volkow ND, Heintz N, Pan Y, Du C. Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci. 2011;31:13180–90.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (55) https://doi.org/10.1523/JNEUROSCI.2369-11.2011
  54. Kai N, Nishizawa K, Tsutsui Y, Ueda S, Kobayashi K. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. J Neurochem. 2015;135:1232–41.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (56) https://doi.org/10.1111/jnc.13380
  55. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Hervé D, Valjent E, et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci. 2008;28:5671–85.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (57) https://doi.org/10.1523/JNEUROSCI.1039-08.2008
  56. Kenny PJ, Voren G, Johnson PM. Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr Opin Neurobiol. 2013;23:535–8.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (58) https://doi.org/10.1016/j.conb.2013.04.012
  57. Caravaggio F, Raitsin S, Gerretsen P, Nakajima S, Wilson A, Graff-Guerrero A. Ventral striatum binding of a dopamine D2/3 receptor agonist but not antagonist predicts normal body mass index. Biol Psychiatry. 2015;77:196–202.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (59) https://doi.org/10.1016/j.biopsych.2013.02.017
  58. Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, et al. Striatal Dopamine Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab. 2016;23:103–12.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (60) https://doi.org/10.1016/j.cmet.2015.10.009
  59. Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, et al. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci. 2016;19:465–70.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (61) https://doi.org/10.1038/nn.4224
  60. Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019;103:891–908.e6.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (62) https://doi.org/10.1016/j.neuron.2019.05.050
  61. Cone JJ, McCutcheon JE, Roitman MF. Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J Neurosci. 2014;34:4905–13.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (63) https://doi.org/10.1523/JNEUROSCI.4404-13.2014
  62. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006;51:811–22.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (64) https://doi.org/10.1016/j.neuron.2006.09.006
  63. Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, et al. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol. 2018;16:e2006682.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (65) https://doi.org/10.1371/journal.pbio.2006682
  64. Bellocchio L, Soria-Gómez E, Quarta C, Metna-Laurent M, Cardinal P, Binder E, et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc Natl Acad Sci USA. 2013;110:4786–91.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (66) https://doi.org/10.1073/pnas.1218573110
  65. Godlewski G, Cinar R, Coffey NJ, Liu J, Jourdan T, Mukhopadhyay B, et al. Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis. Cell Metab. 2019;29:1320–.e8.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (67) https://doi.org/10.1016/j.cmet.2019.04.012
  66. Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015;125:782–6.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (68) https://doi.org/10.1172/JCI78361
  67. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature 2017;551:333–9.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (69) https://doi.org/10.1038/nature24489
  68. Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest. 2017;127:4148–62.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (70) https://doi.org/10.1172/JCI83626
  69. Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun. 2016;7:11905.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (71) https://doi.org/10.1038/ncomms11905
  70. Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 2013;503:111–4.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (72) https://doi.org/10.1038/nature12596
  71. Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron 2019;102:653–.e6.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (73) https://doi.org/10.1016/j.neuron.2019.02.028
  72. Manta S, El Mansari M, Debonnel G, Blier P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol. 2013;16:459–70.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (74) https://doi.org/10.1017/S1461145712000387
  73. Perez SM, Carreno FR, Frazer A, Lodge DJ. Vagal nerve stimulation reverses aberrant dopamine system function in the methylazoxymethanol acetate rodent model of schizophrenia. J Neurosci. 2014;34:9261–7.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (75) https://doi.org/10.1523/JNEUROSCI.0588-14.2014
  74. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (76) https://doi.org/10.1038/nrn.2016.165
  75. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012;153:647–58.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (77) https://doi.org/10.1210/en.2011-1443
  76. Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, et al. Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation. Neuron 2016;90:1286–98.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (78) https://doi.org/10.1016/j.neuron.2016.04.035
  77. Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, et al. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Rep. 2016;15:2796–808.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (79) https://doi.org/10.1016/j.celrep.2016.05.057
  78. Wang X-F, Liu J-J, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. Cell Rep. 2015;12:726–33.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (80) https://doi.org/10.1016/j.celrep.2015.06.062
  79. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell 2015;162:622–34.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (81) https://doi.org/10.1016/j.cell.2015.07.015
  80. Clemmensen C, Müller TD, Woods SC, Berthoud H-R, Seeley RJ, Tschöp MH. Gut-Brain Cross-Talk in Metabolic Control. Cell 2017;168:758–74.
    Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (82) https://doi.org/10.1016/j.cell.2017.01.025

Публікації, які цитують цю публікацію

Dopamine drives food craving during pregnancy

Serge Luquet, Giuseppe Gangarossa

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (83) https://doi.org/10.1038/s42255-022-00555-3

2022, Nature Metabolism, №4, с.410-411

Scopus

WoS

Цитувань Crossref:1

The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism

Raj Kamal Srivastava, Beat Lutz, Inigo Ruiz de Azua

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (84) https://doi.org/10.3389/fncel.2022.867267 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (85)

Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders

Daniela Navarro, Ani Gasparyan, Francisco Navarrete, Abraham B. Torregrosa, Gabriel Rubio, Marta Marín-Mayor, Gabriela B. Acosta, Maria Salud Garcia-Gutiérrez, Jorge Manzanares

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (86) https://doi.org/10.3390/ijms23094764 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (87)

2022, International Journal of Molecular Sciences, №9, с.4764

Scopus

WoS

Цитувань Crossref:15

The effect of in-hospital breast milk intake on the gut microbiota of preterm infants

Rui Yang, Hua Wang, Danqi Chen, Qian Cai, Jiajun Zhu, Shuiqin Yuan, Fang Wang, Xinfen Xu

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (88) https://doi.org/10.1016/j.clnesp.2024.01.020 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (89)

2024, Clinical Nutrition ESPEN, с.146-155

Scopus

WoS

Цитувань Crossref:0

Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case

Thomas H. Lee, Daniela Cota, Carmelo Quarta

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (90) https://doi.org/10.1016/j.biochi.2022.07.006

2024, Biochimie, с.188-195

Цитувань Crossref:1

NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis

Julien Castel, Guangping Li, Oriane Onimus, Emma Leishman, Patrice D. Cani, Heather Bradshaw, Ken Mackie, Amandine Everard, Serge Luquet, Giuseppe Gangarossa

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (91) https://doi.org/10.1038/s41380-024-02427-6 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (92)

2024, Molecular Psychiatry, №5, с.1478-1490

Scopus

WoS

Цитувань Crossref:0

Gut microbes and food reward: From the gut to the brain

Alice de Wouters d’Oplinter, Sabrina J. P. Huwart, Patrice D. Cani, Amandine Everard

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (93) https://doi.org/10.3389/fnins.2022.947240 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (94)

2022, Frontiers in Neuroscience

Scopus

WoS

Цитувань Crossref:0

Progress of neural circuits mechanism underlying metabolic and hedonic feeding

Xiaotong Wu, Jacob Junlin Wang, Xiaomeng Wang, Hao Wang

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (95) https://doi.org/10.26599/sab.2022.9060021

2022, Stress and Brain, №3, с.66-77

Цитувань Crossref:1

The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D2 Receptor-Expressing Neurons

Enrica Montalban, Roman Walle, Julien Castel, Anthony Ansoult, Rim Hassouna, Ewout Foppen, Xi Fang, Zach Hutelin, Sophie Mickus, Emily Perszyk, Anna Petitbon, Jérémy Berthelet, Fernando Rodrigues-Lima, Alberto Cebrian-Serrano, Giuseppe Gangarossa, Claire Martin, Pierre Trifilieff, Clémentine Bosch-Bouju, Dana M. Small, Serge Luquet

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (96) https://doi.org/10.1016/j.biopsych.2023.02.010 · Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (97)

2023, Biological Psychiatry, №5, с.424-436

Scopus

WoS

Цитувань Crossref:4

Metabolic Messengers: endocannabinoids

Arnau Busquets-García, Juan P. Bolaños, Giovanni Marsicano

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (98) https://doi.org/10.1038/s42255-022-00600-1

2022, Nature Metabolism, №7, с.848-855

Scopus

WoS

Цитувань Crossref:3

Знайти всі цитування публікації

Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Duncan Muller

Last Updated:

Views: 5768

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Duncan Muller

Birthday: 1997-01-13

Address: Apt. 505 914 Phillip Crossroad, O'Konborough, NV 62411

Phone: +8555305800947

Job: Construction Agent

Hobby: Shopping, Table tennis, Snowboarding, Rafting, Motor sports, Homebrewing, Taxidermy

Introduction: My name is Duncan Muller, I am a enchanting, good, gentle, modern, tasty, nice, elegant person who loves writing and wants to share my knowledge and understanding with you.