https://doi.org/10.1038/s41380-021-01428-z ·
Видання: Molecular Psychiatry, 2022, №4, с.2340-2354
Видавець: Springer Science and Business Media LLC
Автори:
- Chloé Berland
- Julien Castel
- Romano Terrasi
- Enrica Montalban
- Ewout Foppen
- Claire Martin
- Giulio G. Muccioli
- Serge Luquet
- Giuseppe Gangarossa
Джерела фінансування
- Nutricia Research Foundation
- Allen Foundation
- Fondation Fyssen
- Agence Nationale de la Recherche
- CNRS, Université de Paris, Fédération pour la Recherche sur le Cerveau and Association France Parkinson
- Fondation pour la Recherche Médicale
Список літератури
- Berthoud H-R, Münzberg H, Morrison CD. Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology 2017;152:1728–38.
https://doi.org/10.1053/j.gastro.2016.12.050 - Lenard NR, Berthoud H-R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obes (Silver Spring). 2008;16:S11–22. Suppl 3
https://doi.org/10.1038/oby.2008.511 - McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43:2–15.
https://doi.org/10.1016/S0018-506X(02)00024-7 - George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav. 2012;106:58–64.
https://doi.org/10.1016/j.physbeh.2011.11.004 - Volkow ND, Wang G-J, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci (Regul Ed). 2011;15:37–46.
https://doi.org/10.1016/j.tics.2010.11.001 - Mazier W, Saucisse N, Simon V, Cannich A, Marsicano G, Massa F, et al. mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol Metab. 2019;28:151–9.
https://doi.org/10.1016/j.molmet.2019.08.005 - Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, van den Munkhof HE, et al. Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science 2019;364:1271–4.
https://doi.org/10.1126/science.aax1184 - Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y, et al. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. Elife. 2020;9.
https://doi.org/10.7554/eLife.55909 - Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA, et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell 2019;179:1129–.e23.
https://doi.org/10.1016/j.cell.2019.10.031 - Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361.
https://doi.org/10.1126/science.aat5236 - de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;594:5791–815.
https://doi.org/10.1113/JP271538 - Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab. 2021;32:693–705.
https://doi.org/10.1016/j.tem.2021.05.008 - Fernandes AB, Alves da Silva J, Almeida J, Cui G, Gerfen CR, Costa RM, et al. Postingestive Modulation of Food Seeking Depends on Vagus-Mediated Dopamine Neuron Activity. Neuron 2020;106:778–.e6.
https://doi.org/10.1016/j.neuron.2020.03.009 - Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A Neural Circuit for Gut-Induced Reward. Cell 2018;175:665–.e23.
https://doi.org/10.1016/j.cell.2018.08.049 - Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, et al. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metab. 2017;25:335–44.
https://doi.org/10.1016/j.cmet.2016.12.006 - Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav. 2017;171:32–39.
https://doi.org/10.1016/j.physbeh.2016.12.044 - DiPatrizio NV, Joslin A, Jung K-M, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 2013;27:2513–20.
https://doi.org/10.1096/fj.13-227587 - Gómez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci. 2002;22:9612–7.
https://doi.org/10.1523/JNEUROSCI.22-21-09612.2002 - Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005;30:1216–21.
https://doi.org/10.1038/sj.npp.1300695 - Monteleone AM, Piscitelli F, Dalle Grave R, El Ghoch M, Di Marzo V, Maj M, et al. Peripheral Endocannabinoid Responses to Hedonic Eating in Binge-Eating Disorder. Nutrients. 2017;9.
https://doi.org/10.3390/nu9121377 - Kuipers EN, Kantae V, Maarse BCE, van den Berg SM, van Eenige R, Nahon KJ, et al. High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Front Physiol. 2018;9:1913.
https://doi.org/10.3389/fphys.2018.01913 - Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, et al. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab. 2020;31:773–.e11.
https://doi.org/10.1016/j.cmet.2020.02.010 - Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong W-H, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360.
https://doi.org/10.1126/science.aat4422 - Avena NM. The study of food addiction using animal models of binge eating. Appetite 2010;55:734–7.
https://doi.org/10.1016/j.appet.2010.09.010 - DiFeliceantonio AG, Coppin G, Rigoux L, Edwin Thanarajah S, Dagher A, Tittgemeyer M, et al. Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab. 2018;28:33–44.e3.
https://doi.org/10.1016/j.cmet.2018.05.018 - Oosterman JE, Koekkoek LL, Foppen E, Unmehopa UA, Eggels L, Verheij J, et al. Synergistic Effect of Feeding Time and Diet on Hepatic Steatosis and Gene Expression in Male Wistar Rats. Obes (Silver Spring). 2020;28:S81–S92. Suppl 1
https://doi.org/10.1002/oby.22832 - Wang G-J, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC, et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obes (Silver Spring). 2011;19:1601–8.
https://doi.org/10.1038/oby.2011.27 - Spierling S, de Guglielmo G, Kirson D, Kreisler A, Roberto M, George O, et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology 2020;45:579–88.
https://doi.org/10.1038/s41386-019-0538-x - Biever A, Puighermanal E, Nishi A, David A, Panciatici C, Longueville S, et al. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J Neurosci. 2015;35:4113–30.
https://doi.org/10.1523/JNEUROSCI.3288-14.2015 - Gangarossa G, Perroy J, Valjent E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct. 2013;218:405–19.
https://doi.org/10.1007/s00429-012-0405-6 - Radl D, Chiacchiaretta M, Lewis RG, Brami-Cherrier K, Arcuri L, Borrelli E. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms. Proc Natl Acad Sci USA. 2018;115:198–203.
https://doi.org/10.1073/pnas.1717194115 - Reichelt AC, Westbrook RF, Morris MJ. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br J Pharm. 2015;172:5225–38.
https://doi.org/10.1111/bph.13321 - de Araujo IE, Schatzker M, Small DM. Rethinking Food Reward. Annu Rev Psychol. 2020;71:139–64.
https://doi.org/10.1146/annurev-psych-122216-011643 - DiPatrizio NV, Piomelli D. Intestinal lipid-derived signals that sense dietary fat. J Clin Invest. 2015;125:891–8.
https://doi.org/10.1172/JCI76302 - Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017;124:38–51.
https://doi.org/10.1016/j.neuropharm.2017.05.033 - Cluny NL, Vemuri VK, Chambers AP, Limebeer CL, Bedard H, Wood JT, et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br J Pharm. 2010;161:629–42.
https://doi.org/10.1111/j.1476-5381.2010.00908.x - Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012;16:167–79.
https://doi.org/10.1016/j.cmet.2012.07.002 - Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest. 2010;120:2953–66.
https://doi.org/10.1172/JCI42551 - Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5:37–44.
https://doi.org/10.1038/nchembio.129 - Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP. Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS One. 2012;7:e42373.
https://doi.org/10.1371/journal.pone.0042373 - Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol. 2019;10:704.
https://doi.org/10.3389/fphys.2019.00704 - Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab. 2018;12:62–75.
https://doi.org/10.1016/j.molmet.2018.03.016 - Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012;16:296–309.
https://doi.org/10.1016/j.cmet.2012.06.015 - D’Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife. 2016;5.
https://doi.org/10.7554/eLife.12225 - Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, et al. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab. 2020;31:301–.e5.
https://doi.org/10.1016/j.cmet.2019.12.012 - Hutson PH, Balodis IM, Potenza MN. Binge-eating disorder: Clinical and therapeutic advances. Pharm Ther. 2018;182:15–27.
https://doi.org/10.1016/j.pharmthera.2017.08.002 - Carr MM, Grilo CM. Examining heterogeneity of binge-eating disorder using latent class analysis. J Psychiatr Res. 2020;130:194–200.
https://doi.org/10.1016/j.jpsychires.2020.07.032 - Naish KR, Laliberte M, MacKillop J, Balodis IM. Systematic review of the effects of acute stress in binge eating disorder. Eur J Neurosci. 2019;50:2415–29.
https://doi.org/10.1111/ejn.14110 - Bake T, Murphy M, Morgan DGA, Mercer JG. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice. Appetite 2014;77:60–71.
https://doi.org/10.1016/j.appet.2014.02.020 - Muñoz-Escobar G, Guerrero-Vargas NN, Escobar C. Random access to palatable food stimulates similar addiction-like responses as a fixed schedule, but only a fixed schedule elicits anticipatory activation. Sci Rep. 2019;9:18223.
https://doi.org/10.1038/s41598-019-54540-0 - Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev. 2014;121:225–47.
https://doi.org/10.1037/a0035942 - De Ridder D, Manning P, Leong SL, Ross S, Vanneste S. Allostasis in health and food addiction. Sci Rep. 2016;6:37126.
https://doi.org/10.1038/srep37126 - Luo Z, Volkow ND, Heintz N, Pan Y, Du C. Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci. 2011;31:13180–90.
https://doi.org/10.1523/JNEUROSCI.2369-11.2011 - Kai N, Nishizawa K, Tsutsui Y, Ueda S, Kobayashi K. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. J Neurochem. 2015;135:1232–41.
https://doi.org/10.1111/jnc.13380 - Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Hervé D, Valjent E, et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci. 2008;28:5671–85.
https://doi.org/10.1523/JNEUROSCI.1039-08.2008 - Kenny PJ, Voren G, Johnson PM. Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr Opin Neurobiol. 2013;23:535–8.
https://doi.org/10.1016/j.conb.2013.04.012 - Caravaggio F, Raitsin S, Gerretsen P, Nakajima S, Wilson A, Graff-Guerrero A. Ventral striatum binding of a dopamine D2/3 receptor agonist but not antagonist predicts normal body mass index. Biol Psychiatry. 2015;77:196–202.
https://doi.org/10.1016/j.biopsych.2013.02.017 - Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, et al. Striatal Dopamine Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab. 2016;23:103–12.
https://doi.org/10.1016/j.cmet.2015.10.009 - Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, et al. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci. 2016;19:465–70.
https://doi.org/10.1038/nn.4224 - Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019;103:891–908.e6.
https://doi.org/10.1016/j.neuron.2019.05.050 - Cone JJ, McCutcheon JE, Roitman MF. Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J Neurosci. 2014;34:4905–13.
https://doi.org/10.1523/JNEUROSCI.4404-13.2014 - Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006;51:811–22.
https://doi.org/10.1016/j.neuron.2006.09.006 - Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, et al. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol. 2018;16:e2006682.
https://doi.org/10.1371/journal.pbio.2006682 - Bellocchio L, Soria-Gómez E, Quarta C, Metna-Laurent M, Cardinal P, Binder E, et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc Natl Acad Sci USA. 2013;110:4786–91.
https://doi.org/10.1073/pnas.1218573110 - Godlewski G, Cinar R, Coffey NJ, Liu J, Jourdan T, Mukhopadhyay B, et al. Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis. Cell Metab. 2019;29:1320–.e8.
https://doi.org/10.1016/j.cmet.2019.04.012 - Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015;125:782–6.
https://doi.org/10.1172/JCI78361 - Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature 2017;551:333–9.
https://doi.org/10.1038/nature24489 - Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest. 2017;127:4148–62.
https://doi.org/10.1172/JCI83626 - Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun. 2016;7:11905.
https://doi.org/10.1038/ncomms11905 - Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 2013;503:111–4.
https://doi.org/10.1038/nature12596 - Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron 2019;102:653–.e6.
https://doi.org/10.1016/j.neuron.2019.02.028 - Manta S, El Mansari M, Debonnel G, Blier P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol. 2013;16:459–70.
https://doi.org/10.1017/S1461145712000387 - Perez SM, Carreno FR, Frazer A, Lodge DJ. Vagal nerve stimulation reverses aberrant dopamine system function in the methylazoxymethanol acetate rodent model of schizophrenia. J Neurosci. 2014;34:9261–7.
https://doi.org/10.1523/JNEUROSCI.0588-14.2014 - Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.
https://doi.org/10.1038/nrn.2016.165 - Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012;153:647–58.
https://doi.org/10.1210/en.2011-1443 - Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, et al. Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation. Neuron 2016;90:1286–98.
https://doi.org/10.1016/j.neuron.2016.04.035 - Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, et al. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Rep. 2016;15:2796–808.
https://doi.org/10.1016/j.celrep.2016.05.057 - Wang X-F, Liu J-J, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. Cell Rep. 2015;12:726–33.
https://doi.org/10.1016/j.celrep.2015.06.062 - Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell 2015;162:622–34.
https://doi.org/10.1016/j.cell.2015.07.015 - Clemmensen C, Müller TD, Woods SC, Berthoud H-R, Seeley RJ, Tschöp MH. Gut-Brain Cross-Talk in Metabolic Control. Cell 2017;168:758–74.
https://doi.org/10.1016/j.cell.2017.01.025
Публікації, які цитують цю публікацію
Dopamine drives food craving during pregnancy
Serge Luquet, Giuseppe Gangarossa
https://doi.org/10.1038/s42255-022-00555-3
2022, Nature Metabolism, №4, с.410-411
Scopus
WoS
Цитувань Crossref:1
The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism
Raj Kamal Srivastava, Beat Lutz, Inigo Ruiz de Azua
https://doi.org/10.3389/fncel.2022.867267 ·
2022, Frontiers in Cellular Neuroscience
Scopus
WoS
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders
Daniela Navarro, Ani Gasparyan, Francisco Navarrete, Abraham B. Torregrosa, Gabriel Rubio, Marta Marín-Mayor, Gabriela B. Acosta, Maria Salud Garcia-Gutiérrez, Jorge Manzanares
https://doi.org/10.3390/ijms23094764 ·
2022, International Journal of Molecular Sciences, №9, с.4764
Scopus
WoS
Цитувань Crossref:15
The effect of in-hospital breast milk intake on the gut microbiota of preterm infants
Rui Yang, Hua Wang, Danqi Chen, Qian Cai, Jiajun Zhu, Shuiqin Yuan, Fang Wang, Xinfen Xu
https://doi.org/10.1016/j.clnesp.2024.01.020 ·
2024, Clinical Nutrition ESPEN, с.146-155
Scopus
WoS
Цитувань Crossref:0
Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case
Thomas H. Lee, Daniela Cota, Carmelo Quarta
https://doi.org/10.1016/j.biochi.2022.07.006
2024, Biochimie, с.188-195
Цитувань Crossref:1
NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis
Julien Castel, Guangping Li, Oriane Onimus, Emma Leishman, Patrice D. Cani, Heather Bradshaw, Ken Mackie, Amandine Everard, Serge Luquet, Giuseppe Gangarossa
https://doi.org/10.1038/s41380-024-02427-6 ·
2024, Molecular Psychiatry, №5, с.1478-1490
Scopus
WoS
Цитувань Crossref:0
Gut microbes and food reward: From the gut to the brain
Alice de Wouters d’Oplinter, Sabrina J. P. Huwart, Patrice D. Cani, Amandine Everard
https://doi.org/10.3389/fnins.2022.947240 ·
2022, Frontiers in Neuroscience
Scopus
WoS
Цитувань Crossref:0
Progress of neural circuits mechanism underlying metabolic and hedonic feeding
Xiaotong Wu, Jacob Junlin Wang, Xiaomeng Wang, Hao Wang
https://doi.org/10.26599/sab.2022.9060021
2022, Stress and Brain, №3, с.66-77
Цитувань Crossref:1
The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D2 Receptor-Expressing Neurons
Enrica Montalban, Roman Walle, Julien Castel, Anthony Ansoult, Rim Hassouna, Ewout Foppen, Xi Fang, Zach Hutelin, Sophie Mickus, Emily Perszyk, Anna Petitbon, Jérémy Berthelet, Fernando Rodrigues-Lima, Alberto Cebrian-Serrano, Giuseppe Gangarossa, Claire Martin, Pierre Trifilieff, Clémentine Bosch-Bouju, Dana M. Small, Serge Luquet
https://doi.org/10.1016/j.biopsych.2023.02.010 ·
2023, Biological Psychiatry, №5, с.424-436
Scopus
WoS
Цитувань Crossref:4
Metabolic Messengers: endocannabinoids
Arnau Busquets-García, Juan P. Bolaños, Giovanni Marsicano
https://doi.org/10.1038/s42255-022-00600-1
2022, Nature Metabolism, №7, с.848-855
Scopus
WoS
Цитувань Crossref:3
Знайти всі цитування публікації